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ABSTRACT

> This paper presents computer estimations of the response of models of mechanically driven

regularly ribbed fluid loaded panels. The estimates are presented in terms of the spectral

distribution of the acceleration of the panel and the spectral distribution of the pressure in the fluid.

The ribs are defined in terms of line and line moment impedances; these may be mass, resistance,

and/or stiffness controlled, and of various values and combinations. Typical estimations of the

spectral distribution of the magnitudes of the acceleration are displayed as functions of the

normalized wavenumber that lies in the plane of the panel and normal to the ribs and the normalized

frequency. The magnitudes of the acceleration vanish at the sonic loci when fluid loading is

included. A sonic gorge, with a nadir at the sonic loci, characterizes the acceleration of the fluid
loaded panel, whether unribbed or ribbed. If the magnitudes of the line impedances (and, when

appropriate, also the line moment impedances) of the ribs are not unusually high, the magnitudes

of the acceleration and their patterns elsewhere in the spectral domain remain substantially similar

to 'hose obtained in the absence of fluid loading.'The dissimilarities are readily accounted for by

straightforward arguments relating to the increas in the surface mass and the radiation damping

that manifest fluid loading on panels. The corrosponding magnitudes of the pressure on the

surface of the panel do not vanish at the sonic loci as do the magnitudes of the acceleration.

Rather, a moderate sonic peak appears at the sonic loci and a sonic ridge replaces the sonic gorge.

The loss of subsonic components in the pressure on a plane, as the plane is removed from the

surface of the panel, is clearly displayed.
/
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INTRODUCTION

A recent paper formulated the acoustic behavior of ribbed panels immersed in uniform

environments and presents computer estimations that examined and illustrated some aspects of the

formalism [1]. The response of a ribbed panel to a specific external drive is presented in terms of

the spectral distribution of the velocity (acceleration or displacement) on the panel and the pressure

on a plane at or above the panel. An external drive is a drive which is independent of the response

of the dynamic system that it excites. In this paper, the specific external drive is a line drive that it

is oriented parallel to the ribs. The estimations that are computed can be employed, for example, in

the design of spectral (wavevector-frequency) filters destined to measure, in real situations, similar

responses on similar dynamic systems. In a companion paper such considerations were conducted

on panels that were membranes and the environmental loadings were ignored [2]. A major

emphasis in Reference 2 was placed on the comparison between panels to which a finite and an

infinite number of ribs were attached. (It would help the reader to be familiar with the material

discussed in References I and 2.) This paper considers a more elaborate model of a ribbed panel

which may be plate-like, and fluid loading is included. However, only regularly ribbed panels are

considered; i.e., panels to which an infinite number of identical and regularly spaced ribs are

attached. For a regularly ribbed panel, one derives the spectral distribution of the veo, "ty

V(k, Q2) in terms of the impulse response function G (k I k', o2) and the external drive Pe(k', w2)

both expressed in the spectral domain; namely,

V(k, 02) = fG( I k', 0 2) dk' P(k 2); A(k, Q2) = ioV(k, Q2);

D(k, 02) = (i(0)-1 V(k, W2)' I

G(k I k', w2 ) = G.(k, C2) {8(k-k') - Ss(k I k', W2)1 (2)
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{ (k + K-k')

S, (k I k, 2 )=[1 + R (k + xj, 0 2)]- fi.(k', . 2) n (+ .(3)
j ( :I exp [ix. (k k- k')]

n

[cf. Eqs. (8), (9), and (1 lb) of Reference 2.] In Eq. (1) the spectral distributions of the velocity

V (k, LP 2), the acceleration A (k, C 2) , and the displacement D (k, C 2) on the panel are related.

The relationship is simple so that using one form of the response of the panel rather than another is

a matter of convenience. In Eqs. (2) and (3), G.(k, D2 ) is the surface admittance of the unribbed

panel, xn is the position in the x-domain of the (n)th rib, c. is the separation wavenumber, Cj =

jlc, =1c (21t/b), where b is the separation between two adjacent ribs, and H. (k, Q2) is the

product of the equivalent surface impedance of a rib and the surface admittance of the unribbed

panel. (When the ribs are absent, b serves merely as a linear spatial scale factor.) The explicit

expression for H (k, 0 2) is

Ho, (k, T2) = (i 1/2) [ Z (2) - ik ZM(T 2) ] G (k ) , (4)

where Z (2) and ZM(o)2) are the line impedance and the line moment impedance of a typical rib.

(The line moment impedance ZM(2) is a viable quantity only when the panel can support a

moment response; e.g., a plate responding in flexure. Otherwise, ZM(Q02) needs to be set equal to

zero [2].) The spectral vector c 2 = {ky,O ] designates the Fourier conjugate of y and t; y is tine

spatial variable that lies along the ribs in the plane of the panel and t is the temporal variable; see

Fig. 1. The dependence of a quantity on the spectral vector variable 0 2 is suppressed at times as a
matter of abbreviation; e.g., G,,(k, ) Go(k) • Note that Ss ( k k', _)2, stated in Eq. (3), is

aliased in the wavenumber k with respect to the harmonics of the separation wavenumber icI. This

aliasing is transmitted also to the drive in lieu of the ribs; the aliasing in the latter quantity was

discussed briefly [2]. The aliasing in k with respect to the harmonics of KI may be stated in the
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form Ss (k k') - Ss( k + K1 Ik'). [cf. Eq. (13) of Reference 2.] The external drive employed in

this paper is of the form

Pe Wk, 0 2) = Pea (Q?2) exp (i k'x. (5a)

This form of the external line drive qualifies as follows: The external line drive Pe( x, o 2 ) is assumed

to be applied centrally at xa so that about this position its description is Pee( x - Xa, LO 2) • It follows

that Pe( X, C- 2 ) Pee( X - Xa, W 2 ). Then, by a Fourier transformation, one obtains

Pe (k, Q2) = Pee(k' L02 ) exp (ikxa), where typically one defines Pee(k) = (270) 112 f dx pee(x) exp (ikx).

Furthermore, if the external line drive is localized at xa so that

Pee( X - xa, Lo 2 ) = (27c) 1 Pea(W 2) 8i( x-x ) , (5b)

then Pee(ko 2) = Pea(P 2 ) and Eq. (5a) is explained. From Eqs. (1) through (3) and (5) one

obtains

V(k, Q?2 )=V..0k, C02) 1-

[i +_H,(k+ K1 ,lg 2 k + .n, 2 )exp(ixan)1} (6)

where

V ,(k,2)=G(k,( 2 )Pe(W 2 )exp(ixak) (7)

PARAMETRIC DEFINITION OF THE FLUID, THE PANEL, AND THE RIBS

To facilitate the estimation of V(k, W 2) [A (k, Q 2) or D (k, 0 2) ] as stated in Eqs. (1) and

(6), it remains to express more explicitly the quantities and parameters that are involved in this

equation. The surface admittance of the panel is expressed in the form
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G.(k, ) = [ZP(k, 02 ) + Z/k, 9 2)]-1 ; Zk, 02) = Ztl(k, Q2) + Zbz(k, 02), (8)

where Z/(k, (o2) is the loading on the panel by the uniform environment, Zt/(k, f02) is this

loading on one (top) surface and Zbt(k, 02) is this loading on the other (bottom) surface of the

panel, and Zp(k, o 2 ) is the mechanical surface impedance of the panel [1].

In this paper the environmental loading is limited to that of a semi-infinite fluid occupying

the space above the panel as shown in Fig. 1. The fluid loading on the panel may then be

expressed in the form [1, 2]

ZAk, Q) = Ztk, q?) = po/k 3 = pc(k 3c/) " , (9)

where p is the density and c is the speed of sound in the fluid and
(k3c/co) =[1 k2 ]'/2  l2 112 t2

= - U[1-k 2 ] -i[k -1] U[R -1]

.2= (c / ) 2 (k 2 + ) (10)

In this paper the mechanical surface impedance of the panel is stated in the simple but

orthotropic form

Z , ( k, )= irom [ 1 - {(k / kp )2 +(ky / kPY )2 ()

where m is the mass per unit area and {kp, kpy} is the free wavevector on the panel. The panel is

membrane-like if p = 1, and is plate-like responding in flexure if p = 2. The free orthotropic

wavevector kP is written in the form

k.p ={kp,kpy}; kp = kpo (1 - irp );kpy = kpyo(1 - iTipy );. kpo ={kpo,kpyo} , (12)

where {TIp, Tlpy} is the loss factor "vector". For a plate and a membrane that is made to simulate a

plate responding in flexure
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(cio~ / c2); y o Ic 2 ) ; IkpoI / (kCo + k2 )1/2kPO PYO 1/2(13)

where (cc and COcy are the critical frequencies in the x- and y-domain, respectively. These critical

frequencies are defined with respect to the speed of sound c in the fluid facing the panel. For a

plate in longitudinal response and a membrane in flexural response

kpO =(iI / c )2 (k/ ) (C/ 2; ky ° = ((/ CY)2 (kCY)2 (c/c~y)2, (14)

where { kc, kcy} = {(o)c / c), (ocy / c) } and the free wave velocity in the panel is {c 1 , cty }. The

surface admittance may then be derived from Eqs. (8), (9), and (11) in the explicit form

G. (k, Q 2) = [Z.. ( k, W 2) 1-1;

Z--(k'0 ) ( (0M)[ 1-_{(k/ kP)2"_,(ky / kPY)2}P- (i Ec) (kc /Coc)-] ' (15)

where the fluid loading parameter E is defined

=(pc/ ocm) (16)

In this paper the panel is assumed to be isotropic; kPO = kpyo; Thp = T1py, ok = Okcy. The orthotropic

form for the mechanical surface impedance of the panel is stated to indicate that simple orthotropy

can be readily accommodated in the estimations of the response.

The line impedance and line moment impedance of a typical rib may be cast in various

forms some of which may be elaborated to reflect the various properties that the ribs and their

attachment to the panel may possess [1]. In this paper the explicit expressions for the line

impedance and line moment impedance are cast in the simple forms

Z_Z io)(Mg+Mo); Mo=M{1- (o/w 0 )2 (1-i1o)} 1  (17)
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ZMj=ZM =i03(M/kMo) ; kMo= kM {1- (O3/ o 2)2 (1-iT1Mo)} (M/Mo)

(18)

respectively, where Mg and M are masses per unit length, kM is a specified wavenumber, co0 and

t0Mo are given resonance frequencies, and rTo and TiMo are assigned loss factors. The line

impedance of the rib, stated in Eq. (17), is slightly more elaborate than that assumed in Reference 2

in that a mass controlled impedance (io3Mg) is added and placed adjacent to the panel [1]. Also, the

line moment impedance of a typical rib is included here.

From Eqs. (4), (15), (17), and (18) one obtains

n 0 ( k, 2 ) = [(Mg/mb)+ ( Mo/mb){ 1 - i( k / kMo )}]

1 - (k/k) 2 + (k/kP) } - i c (k3c/3c)-] (19)

Again, the elaborations introduced in Eqs. (17) and (18) and, in turn, in Eq. (19), are not

employed directly in this paper; they are included in order to indicate the readiness with which they

can be accommodated in the estimations.

ESTIMATIONS OF THE RESPONSE OF AND THE PRESSURE ABOVE THE PANEL

Uniform environmental loadings and fluid loading in particular, can be readily accommodated in

the computations; i.e., there is no difficulty inserting Eqs. (4) and (8) in general, and Eqs. (15) and (19)

in particular, in Eq. (6). The resulting equation evaluates the response of the panel merely in terms of

summations over harmonics with respect to the separation wavenumber 1; 1ic1 = (2nt/b). For reasonable

panels, ribs, and fluid loading, the summations can be approximated by a small number of terms,

therefore the computations can be handled by a desk top computer. [cf. Appendix A.]
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The pressure spectral distribution P( k, c 2, z) in the fluid on a plane a distance z above the panel

is derived directly from the velocity spectral distribution V( k, Q2) on the surface of the panel; namely,

P( k, 2,z) = exp (-i k3 z ) Z( k, 0 2) V( k, 2), (20)

where

Zf(k, o 7) = Ztz(k, c 9,) = (po / k3) = pc (k3 c/o)
-1  (21)

and use is made of Eq. (9) [1]. The explicit expression for (k3 c/Co) is given in Eq. (10). Thus, once the

velocity spectral distribution of the panel is estimated, the pressure spectral distribution on a plane a

distance z above the panel readily follows, as 'tated in Eq. (20), where Zf(k, " ) represents the

conversion factor from the spectral distribution of the velocity V(k, W 2 ) of the panel to the spectral

distribution of the pressure P( k, Q 2, 0 ) [- P( k, 0 2)] in the fluid on the surface of the panel. With this

interpretation, the factor exp (-ik3 z ) represents the filtering performed by propagation through the slab

of fluid between the surface of the panel and a control plane above it where the pressure is estimated [1].

Eq. (10) shows that, for a supersonic component in P (k, Q 2), this filtering is a mere phase change -

propagation without decay. For a subsonic component in P (k, Q) 2), this filtering is an exponential

decay with an exponent that increases linearly with the normal distance of the control plane above the

panel.

NORMALIZATIONS AND DISPLAYS

The preceding formalism is used to calculate the spectral distributions of the response of several

representative cases of interest. The response quantifies chosen are the acceleration A(k, (01 ) on the

surface of the plate [which is simply related to the velocity V(k, W 2 ) and/or displacement D(k, Lo, ); see

Eq. (1)] and the pressure P( k, 9 2' z ) in the fluid on a control plane placed a normal distance z above

the surface of the plate. The relevant spectral distributions are cast in the normalized forms:
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A (k, 0)2 ) = A(k, Q2 ) [Pea(0 2 )/m] = (o/o) V(k, W2 )

V(k, 0t 2 ) = V(k, C02 ) [Pa (W?2 ) / iocm] - 1 , (22)

P(k, 02, z) = P(k, co 2, Z) [Pea (W 2) (-cA)] '  (23)

where cc is defined in Eq. (16). Only magnitudes of these quantities are displayed. By and large, these

magnitudes are displayed clipped by certain predetermined and convenient clipping values (thresholds)

so that only magnitudes that exceed these thresholds are shown. The clipping values are designated by a

superscript of zero; e.g., the clipping values of IAl and IPI are thus designated lA-I and IV I, respectively

[2]. The estimations may be conveniently displayed on planes defined by any two of the normalized

dependent variables (k/c), (k/ic1 ), and (w/oc), with the third held fixed. In this paper, the {(k/lc),

((o/wqc)1-plane is used and the magnitudes of a quantity are computed as a function of the normalized

wavenumber (k/K1), at specific, equal, and successive values of the normalized frequency (co c) with a

fixed value of (k/ic) [2]. Also, the computations are focused on limited portions of the f(k/rl),

((/i)}-plane; usually the lower wavenumber and frequency portions. [The graphs are displayed in the

format of Figs. 3 and 4 of Reference 2; acquaintance with the format of these figures will assist readers

unacquainted with these display procedures.]

COMPUTER ESTIP ATIONS

In Section II, the parameters of influence on the estimated magnitudes of interest are:

p, (ct /0), (ky, (M/rob), 1rI,(bkc), ((0o / (0c), 110, (bkm), (cl)Mo / (0c)' riMo' (COC/ (OCy) ' (C "/C Y)'

(Tip / iPY), (zb), (xa/b), Er, A01, [P °1, etc. In describing the figures, it is convenient to define a set

of standard conditions for the estimations of the spectral distributions of the magnitudes of the

response. The standard conditions are:

9



The panel is isotropic,

6(M/mb) = 0.3, (bkm) = 10 , (bkc) = 16, (bky) = 0 , (Xa/b) = 0.3

I 01 = 1.4, IF0 1 = 1.4, and

15xl0 -3  , p= 1 . =0.1 withfluidloading
lip - 12.5x10-3 , = 2 Cc 0.0 with fluid loading removed (24)

Note that the standard conditions are defined with the thresholds IA °land P 01 equal. The standard

conditions are conveniently defined so that only departures need reporting in the text and figure

captions. Figure 2 displays a set of computed estimates relating to the acceleration spectral

distribution of line driven unribbed panels. In Fig. 2a the acceleration spectral distribution on an

unribbed fluid loaded membrane is displayed; the membrane is made to simulate the dispersion

properties of a plate responding in flexure. [cf. Fig. 4 of Reference 2.] The expected vanishing of

the response of the panel at the sonic loci and the associated sonic gorge is clearly discemable. In

Fig. 2b the corresponding estimations for an unribbed fluid loaded plate responding in flexure are

displayed. The analogies and differences between the response on a membrane that simulates a plate

in flexure and a plate in flexure can be deciphered by comparing Fig. 2a with Fig. 2b. Except for

minor details, the patterns in the response show that a membrane can be analytically modeled to

simulate the response of a plate in flexure. [cf. Eqs. (13) and (14).] The clipped version of Fig. 2b

is displayed in Fig. 2c.

The corresponding pressure spectral distributions on a plate responding in flexure and on a

plane some distance above it are shown in Figs. 3a and b, respectively. The manner in which the

acceleration spectral distribution converts into the pressure spectral distribution on the surface of

the panel is illustrated by comparing Figs. 2b and 3a; the absence of the sonic gorge in the spectral

distribution of the pressure is noted. Indeed, not only is the sonic gorge ironed out but moderate

peaks occur at the sonic loci and a sonic ridge is formed. The suppression of subsonic
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components in the pressure spectral distribution on a plane parallel to the panel as the plane is

further removed from the panel is illustrated by comparing Figs. 3a and b [cf. Eqs. (10) and (20)].

The computed estimations relating to the response of a regularly ribbed panel that is mostly

fluid loaded and mostly plate-like is now introduced. The displays are in the format of Fig. 2c in

that the magnitudes displayed are clipped. In Appendix A, the formalism stated in Eq. (6) admits

readily to accounting for fluid loading and/or to accounting for regularly ribbed plates responding

in flexure. It is intended just to illustrate the influence of fluid loading on panels that are plates

responding in flexure; other kinds of panels (e.g., membranes) and other types of reponses (e.g.,

longitudinal) which were widely used in Reference 2, are omitted for brevity.

Figure 4 displays the clipped magnitudes of the acceleration of a regularly ribbed fluid

loaded plate responding in flexure. In this figure the line impedance of each of the identical ribs is

assumed to be mass controlled, and the line moment impedance is assun to be negligible. The

clipping value in all of Fig. 4 is identical. The acceleration spectral distribution of a standard fluid

loaded, regularly ribbed and isotropic plate; i.e., (M/mb) = 0.3 , Tip = 2.5 x 103 (bkc) = 16, o\=

OTcy, Tip = lPY, and Cc= 0.1, is depicted in Fig. 4a. Figure 4b is the same as Fig. 4a except that

fluid loading is removed by setting ec= 0. [In this connection, it is noted that a fluid loading

represented by Ec= 0.1 is "heavy".] The similarities between the displays shown in Fig. 4a and b

are clear enough. However, close observation shows minor dissimilarities; e.g., the dispersion

peaks occur at slightly different loci in Fig. 4a and b. A fairly common procedure replaces fluid

loading on a panel by adding surface mass and increasing the loss factor to compensate for the

radiation damping. How adequate is such a procedure? The computation performed may be used

to answer this question in part. A surface mass of (p/k1 , ) is added to the surface mass of the panel

and the distributed damping designated by Tip is increased by the factor y, where kp I is the free

wavenumber on the panel corrected for fluid loading and y > 1. To accommodate this procedure,

fluid loading is ignored and the mechanical surface impedance of the isotropic panel is replaced

instead by
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0, ) = i10m [I + (p/mk) - (k2  /kP]

kP= kPO(l - iY1T) ; = (coc /c 2) (25)

where

1 + (p/rnkpl) (l/kpo) 2p (26)

[cf. Eqs. (11) and (15).] If one finds that kPI can be approximated by kPO in Eq. (26) then in Eq.

(25) one may set

(p/mkPj) = (p/Mkp,) = (who) 1/2 Ec (27)

Figure. 4c illustrates the use of this procedure for the standard (moderate) conditions under which

Fig. 4a is obtained. The similarities between Figs. 4a and c are increased and the dissimilarities are

decreased as compared to those between Figs. 4a and b; e.g., the dispersion peaks are substantially

coincident in Figs. 4a and c. However, closer examination, especially in the unclipped versions of

these figures, shows that the sonic gorge is not present in Fig. 4c. At and in the vicinity of the

sonic region, the similarities between Figs. 4b and c are closer than those between Figs. 4a and c.

This indicates that the above procedure for accounting for fluid loading may, with caution, be

useful for certain purposes.

In Fig. 5 the mass ratio (M/mb) is increased from 0.3 to the rather large value of 3:

otherwise the standard conditions imposed on Fig. 4a remain intact. In Fig. 5a the fluid loading

remains standard at EC= 0.1. In Fig. 5b the fluid loading is removed; c= 0. Comparing Figs. 5a

and b reveals that fluid loading does significantly influence the patterns when the line impedance of

a typical rib is "heavy." This kind of influence of fluid loading supports the notion that fluid

loading tends to "mend and soften" the discontinuities associated with attaching heavy ribs to the

panel [3-5].
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In Fig. 6 the line impedance of a typical rib is decreased and the line moir.=nt impedance of

a typical rib is introduced. This is accomplished by choosing a mass ratio of (M/mb) = 0.05 and

(kMb) = 9. [In Figs. 4 and 5 the line moment impedance of a typical rib is removed by setting

(kMb) = 106; see Eq. (24). ] In Fig. 6 the line moment impedance is mass controlled as is the line

impedance. In Fig. 5a fluid loading is present with Ec= 0.1, and in Fig. 5b fluid loading is

removed by setting F-,= 0. The similarities and dissimilarities between Figs. 6a and b are

analogous to those found between Figs. 4a and b. The introduction of line moment impedances

shows no dramatic effects in the response of the panel to a line drive.

Attention is now focused on computer estimations of the pressure spectral distribution on

and above the plane of the regularly ribbed fluid loaded panel. [cf. Figs. 3a and b.] Figs. 7a, b,

and c display the magnitudes of the pressure spectral distribution above a plate responding in

flexure and under standard conditions; see Eq. (24). In Fig. 7a the pressure spectral distribution is

that on the surface of the plate; (zkc) = 0. In Figs. 7b and c the magnitudes of the pressure spectral

distribution are those on control planes removed by (zkl) = 2 and by (zk,) = 12, respectively,

normally off the plate. The suppression of the subsonic components by this removal is clearly

evident, as is the sonic ridge. Comparing Figs. 3a and b and Fig. 7 illustrates the contribution that

ribs make to the pressure spectral distribution. The contribution made by the ribs in the supersonic

region is of particular interest. In this connection, comparing Figs. 4a and 7a again reveals the

depression at and in the vicinity of the sonic region in Fig. 4a, and the enhancement at and in the

vicinity of the corresponding spectral region in Fig. 7a. Indeed, a sonic gorge in Fig. 4a is the

counterpart to a sonic ridge in Fig. 7; e.g., Fig. 7b [6].1 The dominant influence of fluid loading

I One needs to differentiate between the spectral distribution of the pressure in a plane above the

surface of a vibrating surface and the pressure radiated to a localized spatial region above the
surface. These two manifestations of the pressure field are related but not coincident. Indeed,
characteristics exhibited in one may not be exhibited in the other. Stretching a point to illustrate the
statement, consider a panel vibrating under a local external drive. The sonic ridge will be present
in the spectral distribution of the pressure on a plane removed somewhat from the panel. [cf.
Figure 2e.] On the other hand, the pressure radiated to a localized region on that plane, but that is
far removed from the location of the external drive will not track the sonic ridge, notwithstanding

13



at and near the vicinity of the sonic range is thus manifested; the influence is dominant because the

fluid surface impedance in that spectral range is the dominant term in the surface impedance of the

panel. Again, these displays, and those presented in Reference 2 were given to briefly establish

the kind, the type, and the wide range of computer estimations that can be conducted in terms of

the formalism presented. No attempt was made to cover a specific feature of interest. This

coverage can be provided when a specific question or need arises.

that the contribution to this radiated pressure, at grazing angles, is contributed by the near sonic
components on the plane of the panel. The lack of tracking is explained when one realizes that the
radiated pressure is contributed by the appropriate spectral components on the plane of the panel
that are related to the velocity and not to the pressure. The far field radiated pressure tracks, by and
large, the spectral distribution of the velocity and not of the pressure [6].
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APPENDIX A

COMMENTS ON IRREGULAR RIBBING

It is crucial to realize that the simplicity in the computations afforded in Eq. (6) is in direct

consequence of the regularity of the ribs and their attachment to the panel. For irregularly ribbed

panels this simplicity is not afforded. If the panel is not regularly ribbed, it becomes necessary to

evaluate the (transfer) line admittance [ 1]

g*- (x, 0 2) = (27)-2 f G. (k, 0 2) dk exp (-ikx) (Ala)

Moreover, when the panel can support a moment response, it becomes necessary to evaluate also

the derivative of g. (x, Co2) with respect to x; namely [1]

gm (x, Q 2) = ( g/ax) g* (x, Q02) (Alb)

In the absence of fluid loading the integration involved in Eq. (Al) is simple enough, but is

difficult when fluid loading is included [3-5]. Moreover, since the response of the ribbed panel is

a functional of g. (x, W 2), and, when appropriate also of g' (x, W 2), and these functions must be

evaluated over an extensive number of values of x which are not simply related, the evaluation of

the response is beset by difficulties that are compounded. This is the sense in which Eq. (6) is

considered relatively simple. The regularity replaces the integral, and, when appropriate, its

derivative with respect to x, by evaluations at a number of discrete values of the wavenumber.

Indeed, one may claim that the regularity in the rib spacing not only facilitates accounting for the

fluid loading but also for determining the response of a plate in flexure. In the case of a plate

15



responding in flexure, the integral in Eq. (AI) is more complicated than it is for a mere membrane.

Finally, the regularity of the separations among the ribs is more significant than the identity of the

line impedances and, when appropriate, also the identity of the line moment impedances of the

ribs. The discrete values in the wavenumber, which are introduced by the harmonics with respect

to Kc1, are not destroyed by relaxing the identity of the line and line moment impedances of the ribs

[2]. Thus, it is conceivable that one could relax the requirement for the identity of the impedances

of the ribs without entirely forfeiting the advantages that an equation like Eq. (6) holds in

accounting for the fluid loading and, when appropriate, in accounting also for "the plate in flexure"

properties of the panel.
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Fluid z

' .P '-Drive

Ribs

Vacuum "-Z ''k

Fig. 1. A sketch of a regularly ribbed fluid loaded panel showing the coordinate
system and the orientation and locations of the ribs and the external line drive.

(O/<Oc):O:06 ]-

a) (k/K 1)

Fig. 2. Magnitudes of the acceleration spectral distribution for an unribbed
fluid loaded panel under standard conditions [Eq. (24)] as a function of the
normalized wavenumber (klKI) at successive and equal increments of the
normalized frequency (o/oc).

a. A membrane that simulates a plate; p = 1.
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b) (k/ic1)-4

=W(, 0.6

A A
0 1 2 30

C) (/ 1  4

Fig. 2 (continued)
(b) A plate in flexure; p =2.

(c) A clipped version of Fig. 2b.
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0. 6

o 1 2 3

(k/ic1)
b)

Fig. 3. Magnitudes of the pressure spectral distribution on a plane above
an unribbed fluid loaded plate under standard conditions [Eq. (24)] as a
function of the normalized wavenumber (k/ic1) at successive and equal
increments of the normalized frequency (wo/wc).
(a) (k) = 0.
(b) (zkd)= 12. 19
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(w/~o) = 0.6
A A

A-A
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(aA A=O
AA

A k.

b) (k/ )

Fig. 4. Magnitudes of the acceleration spectral distribution of a regularly

ribbed plate responding in flexure under standard conditions [Eq. (24)] as
a function of the normalized wavenumber (k/ic,) at successive and equal
increments of the normalized frequency (w/co).
(a) EC=0. 1.
(b) cc=0.0.
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A

0 123

(k/Kc)-
c)

Fig. 4 (continued)
(c) Introduction of fluid loading in the manner specified in Eqs. (25)
through (27) with sc - 0.1 and =2.
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(cod = 0.6

A AA

A_•

0 123

b) (k/ic 1 )

Fig. 5. As in Fig. 4 except that the mass ratio (M/rob) is increased from the
standard value of 0.3 to 3.
(a) c = 0. 1.

(b) c:c = 0.0.

22



(cAod = 0.6
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A. &A. A
_ t. -A -A

A, .A-A

A, -- A

-A A A

-A A A -

A

A .AA A
A

(o)/o:) = 00

0 23

(k/K 1 ) '

Fig. 6. As in Fig. 4 except that the mass ratio (M/mb) and the normalized
moment wavenumber (bkM) are decreased from their standard values of

6
0.3 and 10 , respectively, to the values of 0.05 and 9, respectively.
(a) £-C = 0. 1.
(b) Ec = 0.0.
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((OOc =0.6 _,,__.

o 1 2 3

(k/xc1)
a)

(coco =0.6 ,.

o 1 2 3

(k/ic 1) - '

b)
Fig. 7. Magnitudes of the pressure spectral distribution on planes above the
surface of a regularly ribbed fluid loaded plate responding in flexure under
the standard conditions [Eq. (24)], as functions of the normalized wavenumber
(k/K 1) at successive and equal increments of the normalized frequency ()/oc).
[cf.Fig. 3.]
(a) zkC = 0.
(b) zAkC= 2. 24



c)j

Fig. 7. (continued)
(c) (zk = 12.
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